Notations

- Let S be a fixed compact surface of genus $g \geq 2.$
- Let $\Gamma = \pi_1(S)$ be the fundamental group of S.
- Let \mathcal{C} be the set of free homotopy classes of closed curves on S.
- If S is endowed with a marked hyperbolic metric, for every $c \in \mathcal{C}$, let $\ell(c)$ be the length of the (unique) geodesic representative of c on S.

One factor setting

Let S_0 be a compact surface of genus $g \ge 2, S$, with a marked hyperbolic metric. Equivalently, let ρ_0 be a faithful and discrete representation of $\Gamma = \pi_1(S)$ into Isom(\mathbb{H}^2) such that $S_0 = \mathbb{H}^2/\rho_0(\Gamma)$. Let $\gamma_0 =$ $ho_0(\gamma).$

$$\delta(S_0) := \lim_{R \to \infty} \frac{1}{R} \log \# \{ \gamma \in \Gamma \mid d(\rho_0(\gamma)o, o) \le R \})$$

=
$$\lim_{R \to \infty} \frac{1}{R} \log \# \{ c \in \mathcal{C} \mid \ell_0(c) \le R \})$$

=
$$\lim_{R \to \infty} \frac{1}{R} \log \operatorname{Vol} B(o, R)$$

= 1.

Two factors setting

Let S_1, S_2 be two hyperbolic metrics on S. Equivalently, let ρ_1, ρ_2 be two faithful and discrete representations of Γ into Isom(\mathbb{H}^2) such that $S_i = \mathbb{H}^2/\rho_i(\Gamma)$. Let $\gamma_i = \rho_i(\gamma)$. Consider the diagonal action of Γ on $\mathbb{H}^2 \times \mathbb{H}^2$.

$$\delta(S_1, S_2) := \lim_{R \to \infty} \frac{\log \#\{\gamma \in \Gamma \mid d(\gamma_1 o, o) + d(\gamma_2 o, o) \le R\}}{R}$$
$$= \lim_{R \to \infty} \frac{1}{R} \log \#\{c \in \mathcal{C} \mid \ell_1(c) + \ell_2(c) \le R\})$$
It is not hard to see that

It is not nard to see that

- δ is continuous
- $\delta \in (0, 1/2].$
- $\delta(S_1, S_2)$ is invariant under the diagonal action of MCG(S).

Critical exponent in $\mathbb{H}^2 \times \mathbb{H}^2$

Olivier Glorieux

Université Pierre et Marie Curie, IMJ-PRG.

Comparison to Thurston distance

Let $S_1, S_2 \in \text{Teich}(S)$. Let $\text{dil}^- := \inf_{c \in C} \frac{\ell_2(c)}{\ell_1(c)}$ and $\text{dil}^+ := \sup_{c \in C} \frac{\ell_2(c)}{\ell_1(c)}$. The Thurston distance is defined by : $d_T(S_1, S_2) := \log \max(\operatorname{dil}^+, 1/\operatorname{dil}^-).$

If $\lim \delta(S_1, S_n) = 0$ then $\lim d_T(S_0, S_n) = +\infty$. The converse is false : modify only a subsurface.

Rigidity theorem [1]

C. Bishop and C. Steger proved the following : $\delta(S_1, S_2) = 1/2$ if and only if $d_T(S_1, S_2) = 0$.

Main results

Corollary Let $(S_n)_{n \in \mathbb{N}}$ and $(S'_n)_{n \in \mathbb{N}}$ be two sequences of marked hyperbolic surfaces. Suppose that at least one of the sequences stays in the thick part of Teich(S). Then we have the equivalence $\lim_{n \to \infty} \delta(S_n, S'_n) = \frac{1}{2} \text{ if and only if } \lim_{n \to \infty} d_T(S_n, S'_n) = 0.$ **Optimality** There exists two sequences of marked hyperbolic surfaces $(S_n)_{n \in \mathbb{N}}$ and $(S'_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} \delta(S_n, S'_n) = \frac{1}{2} \text{ and } \lim d_T(S_n, S'_n) = +\infty.$

Example for Theorem

Thanks to the rigidity theorem, we just have to study the asymptotic behaviour in $\partial \operatorname{Teich}(S)$. Along Dehn twists, this is easy. Let α be a simple closed curved and τ_{α} be the Dehn twist around α . Aim : show that $\delta(S_0, \tau_{\alpha}^{2n} S_0)$ does not tend to 1/2 $R^{\text{as }n \to \infty}.$

- Invariance under the MCG(S)
$$\delta(S_0, \tau_{\alpha}^{2n}S_0) = \delta(\tau_{\alpha}^{-n}S_0, \tau_{\alpha}^nS_0).$$

Figure 1: Left and right Dehn twists

• Convexity of length along earthquake [2] $(\ell_0(\tau_\alpha^n c) + \ell_0(\tau_\alpha^{-n} c))_{n \in \mathbb{N}}, \text{ is increasing})$

Example for Optimality

Along pinching the Thurston distance tends to infinity but the Weil-Peterson distance is bounded. Let α a simple closed curve on S. Let S_t the surface we get by pinching α by a factor e^{-t} . We have $d_T(S_t, S_{t+1}) \geq 1$ (compare the length of α). We can show that $\lim \delta(S_t, S_{t+1}) = 0$.

Globally hyperbolic (GH) is a kind of AdSmanifolds, corresponding to quasi-Fuchsian in Riemannian setting. They are parametrized by $\operatorname{Teich}(S) \times \operatorname{Teich}(S)$. A closed geodesic on a GH manifold parametrized by (S_1, S_2) , correspond to a pair of geodesic on (S_1, S_2) . Its Lorentzian length is the mean $\frac{l_1(c)+l_2(c)}{2}$. Consequences Our theorem and examples are analogue of known results in quasi-Fuchsian manifolds. Example in quasi-Fuchsian setting are treated by C. McMullen in [3] and the isolation theorem is due to A. Sanders [4].

- 1999.

Figure 2: Pinching along simple closed curve

Question

Let \mathcal{L} a measured geodesic lamination. This define an earthquake path $t \mapsto S_t = EQ_{\mathcal{L}}^t(S_0)$. Does $\lim_{t\to\infty} \delta(S_0, S_t)$ exists ? Can we give a simple expression in terms of \mathcal{L} ?

Anti de Sitter interpretation

[1] Christopher Bishop and Tim Steger. Three rigidity criteria for psl(2,r). Bulletin of the American Mathematical Society, 24(1):117-123, 1991.

[2] Scott Wolpert. Geodesic length functions and the nielsen problem. Journal of Differential Geometry, 25(2):275–296, 1987.

[3] Curtis T McMullen. Hausdorff dimension and conformal dynamics i: Strong convergence of kleinian groups.

[4] Andrew Sanders. Entropy, minimal surfaces, and negatively curved manifolds.

arXiv preprint arXiv:1404.1105, 2014.

Contact Informations

• Web: http://webusers.imj-prg.fr/ olivier.glorieux/ Email: olivier.glorieux@imj-prg.fr